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The one-dimensional totally asymmetric simple exclusion process (TASEP) is consid-
ered. We study the time evolution property of a tagged particle in the TASEP with
the step initial condition. Calculated is the multi-time joint distribution function of its
position. Using the relation of the dynamics of the TASEP to the Schur process, we
show that the function is represented as the Fredholm determinant. We also study the
scaling limit. The universality of the largest eigenvalue in the random matrix theory is
realized in the limit. When the hopping rates of all particles are the same, it is found
that the joint distribution function converges to that of the Airy process after the time at
which the particle begins to move. On the other hand, when there are several particles
with small hopping rate in front of a tagged particle, the limiting process changes at
a certain time from the Airy process to the process of the largest eigenvalue in the
Hermitian multi-matrix model with external sources.

KEY WORDS: asymmetric simple exclusion process, KPZ universality class, random
matrices, Tracy-Widom distribution, Airy process

1. INTRODUCTION

Dynamics of a nonequilibrium system is one of the most stimulating topics
in statistical mechanics. The dynamical property is determined by the interplay
among various elements such as interaction, initial and boundary conditions, and
so on. But little is known about how it depends on these elements and realizes
universality in a situation where the elements are intertwined. The aim of this article
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is to approach such questions by analyzing the dynamics of the one-dimensional
asymmetric simple exclusion process (ASEP).

The ASEP is one of the most typical models of interacting particle pro-
cesses where particles diffuse to a preferred direction with hard core repulsive
interaction.(1−5) In spite of the simplicity of the model, it has been known that the
ASEP shows various interesting phenomena caused by the collaboration between
the diffusion and exclusion effect. Furthermore, in the one-dimensional case, it
has an integrable mathematical structure which allows us to analyze some physical
quantities exactly. For example, in the open boundary condition a steady state can
be constructed using the matrix product method and q-orthogonal polynomials,
and the boundary-induced phase transition can be discussed.(6−8)

On the other hand, the dynamical (non-stationary) properties of the one-
dimensional ASEP have been also analyzed recently. Among various studies on
the topic, we focus on the problem of the diffusion of a particular particle in
the one-dimensional ASEP. (We call the particle a tagged particle.) This is a
fundamental and elementary problem for the understanding of the dynamics of
the ASEP. We are interested in how initial conditions and the exclusion effect
through hard-core repulsive interaction affect the diffusion property and how it is
different from the (normal) diffusion of the Brownian particle.

The scaling exponent of the diffusion provides insights into these problems.
It was found that it depends on the initial conditions. In a steady state with a given
density, the position fluctuation of a tagged particle grows as t1/2. (9) The exponent
1/2 is the same as that of the Brownian particle. On the other hand, for the fixed
initial conditions where initially we create particles with a given density and fix the
initial configuration, the exponent changes from 1/2 to 1/3. (10,11) Such a diffusion
is called an anomalous diffusion. This exponent 1/3 can be understood from the
fact that the time evolution of the one-dimensional ASEP can be described by
the one-dimensional Kardar-Parisi-Zhang universality class. (12) In the study of the
current in the one-dimensional ASEP on a ring, the exponent 1/3 was calculated
by the Bethe ansatz technique. (13,14)

Note that the two cases above have a common property that the density is
invariant under both time and space translation and a tagged particle moves with
a fixed velocity on average. On the other hand, let us now consider another initial
condition where all sites on the left of a certain bond are occupied while all right
sites are empty. We call this initial condition a step initial condition. This is the
typical initial condition where the density and the average velocity of a tagged
particle change with time. Under the initial condition, we focus on the M th particle
from the right as a tagged particle and consider the time evolution of the particle
when M is large (but finite). In order to study this problem, we investigate the
limiting behavior of the diffusion of the tagged particle as both M and time go
to infinity. In the totally asymmetric simple exclusion process (TASEP), where
particles move only to the right, the average position of a tagged particle has been
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given in the scaling limit. (15) On the other hand, we are interested in the limiting
process itself which the tagged particle obeys, as well as the average position and
the scaling exponent.

Such an attempt as getting more sophisticated information than the scaling
exponent has been recently discussed in the study on the current fluctuations in
the TASEP. Not only the exponent but also the scaling function were obtained and
it was revealed that the function is equivalent to the largest eigenvalue distribu-
tion in the random matrix theory with various universality classes. This develop-
ment is based on the results on the longest increasing subsequence in a random
permutation.(16−20)

Remarkable is that the scaling function detects a difference in initial condi-
tions even if the scaling exponent does not. For instance, in the case of the step
initial condition, the scaling function is equivalent to the GUE Tracy-Widom dis-
tribution, (21) which is the largest eigenvalue distribution of the Gaussian unitary
ensemble (GUE). (17,22,23) In other initial conditions, on the other hand, these are
described as the largest eigenvalue distributions with other universality classes in
RMT such as Gaussian orthogonal ensemble (GOE), (24) two independent GOE’s
which is denoted by GOE2, (19,20) and so on. (22,25) In addition, the equal-time mul-
tipoint distribution of the current fluctuations is obtained in the step and periodic
initial conditions (26) by use of the Green function of the TASEP. (27)

In this article, we calculate the multi-time distribution function of position
fluctuations of a tagged particle in the TASEP with the step initial condition
based on the techniques of the directed polymer problem in a 01 matrix(28−31) and
stochastic growth of Young diagram characterized by the Schur process.(32−37)

We express the function as the Fredholm determinant and discuss the scaling
limit by the saddle point analysis. We remark that what will be considered in
this paper is the pointwise convergence of the kernel. The convergence of the
Fredholm determinant itself is certainly expected to hold from previous works on
related problems, (38,39) but more elaborate asymptotic analysis is necessary for its
proof. In the study on the ASEP, such correlations between different times have
not been studied yet although the Green function(23,27,40) and the equal-time joint
distributions of particle positions (39,41) have been studied recently. In the one-time
case, on the other hand, the position fluctuation is essentially the same as the
current fluctuation which has already been studied in Refs. 17, 25. But it has not
been stated as the position fluctuation.

Furthermore, we also consider the dependence of the distribution function on
defect particles located in front of the tagged particle. Here defect particle means a
particle with different hopping rate from other normal particles and we assume the
number of them is finite. Such a situation as the TASEP with particle-dependent
hopping rates has been recently discussed in Refs. 42–44. We clarify that when
their hopping rate is smaller than that of normal particles, the limiting behavior of
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the multi-time distribution changes due to their presence although their number is
finite.

The paper is organized as follows. In the next section, we describe the defi-
nition of the model. The main result of this article is given in Sec. 3. In Sec. 4,
we express the multi-time distribution of position fluctuations in the TASEP as
Fredholm determinant. For this purpose, we first show that the directed polymer
problem on a 01 matrix is related to the time evolution of a tagged particle in
the TASEP with the step initial condition. Next, by applying the dual Robinson-
Schensted-Knuth algorithm to the 01 matrix, we map the tagged particle problem
in the TASEP to the stochastic growth of Young diagram described by the Schur
process. In Sec. 5, we discuss the two types of scaling limit for the multi-time
distribution function, the case where both time t and the label of the tagged par-
ticle M tend to infinity, and the one where t goes to infinity with M fixed. Some
discussions and concluding remark are given in Secs. 6 and 7 respectively.

2. MODEL

In this section, we define the model and the quantity which we study in this ar-
ticle. Let us consider the one-dimensional infinite lattice and particles as illustrated
in Fig. 1. Each site can be occupied by at most one particle. Suppose all particles
are labeled an integer i from the right. A particle moves stochastically obey-
ing the following rules. During each time step between t ∈ {0, 1, . . .} and t + 1,
the particle labeled i hops to the right neighboring site with probability 1 − qi

(0 ≤ qi < 1) and stays at the same site with probability qi if the right neighboring
site is empty. On the other hand, if the site is occupied by the particle labeled
i − 1, the i th particle stays at the same site with probability 1. This incorporates

(a)

i+1i+2 i

1 − qi1 − qi+1

(b)

1M 23

Fig. 1. Definition of the TASEP with the step initial condition. (a) During each time step, the i th
particle can hop to the right with probability 1 − qi . However, i + 2th particle cannot hop to the right
neighboring site since the site is occupied by i + 1th particle. (b) Step initial condition.
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the exclusion effect which describes the hard core repulsive interaction. When
hopping rates of all particles are the same, i.e., qi = q(∀i), the system is the usual
totally asymmetric simple exclusion process (TASEP) with parallel update. We
allow the particle-dependent hopping rates and study the effects of defect particles.

In this article, we consider the step initial condition in which all sites on the
left of a certain bond between two sites are occupied by particles and all sites on
the right of the bond are empty. Figure 1(b) illustrates the initial condition.

Under these settings, we label the particles at 1, 2, . . . from the right (see
Fig. 1(b)) and consider the dynamics of the particle labeled M . (This particle
which we focus on is called the tagged particle.) For this purpose, we set the
position coordinate such that the tagged particle is at the origin at time 0 as
depicted in Fig. 1(b). Let us define L(t, M) as the position of the M th particle
at time t . In other words, L(t, M) represents the distance travelled by the M th
particle from time 0 through t .

The quantity which we will investigate is the multi-time joint distribution
function for L(t, M) defined as

Prob(L(t1, M) ≥ �1, L(t2, M) ≥ �2, . . . , L(tm, M) ≥ �m) . (2.1)

In particular, we are interested in the asymptotic behavior of (2.1) as t goes to
infinity. In this article, two types of scaling limit will be discussed. The first one
is the limit where both time t and the label of the tagged particle M go to infinity
with the ratio t/M fixed. In the second one, on the other hand, we take the t → ∞
limit with M fixed.

In order to see how the whole particles from the first to M th travel, we
performed the numerical simulation of which the result is shown in Fig. 2. We
considered the time evolution of the particles from the first to 100th and assumed
the hopping rate of all particles is 0.9 except the first, 25th, 50th and 75th particles
whose hopping rate is 0.8. Thus these four particles represent the defect particles.
The typical example of the time evolution of the 100 particles from time 0 through
3000 is illustrated in Fig. 2(a). In this figure, the vertical axis represents the
position coordinate introduced in Fig. 1(b), whereas the horizontal axis is time
axis, and each particle is expressed as +. From the macroscopic point of view
such as Fig. 2(a), we only find that they travel in a group. However, if we zoom the
configuration of the particles in a certain time zone, we can see the microscopic
pattern of the configuration. Here we show two characteristic configurations which
are depicted in Fig. 2(b) and (c). Figure 2(b) (resp.(c)) represents the configuration
of the particles when time is around 200 (resp. 3000). When the time zone which
we focus on is early enough as in Fig. 2(b), the particles move forming only
one group and the four defect particles are included in the group. On the other
hand, when time has passed sufficiently as in Fig. 2(c), they form the four groups
automatically and the top of each group is the defect particle. The similar platoon
structure was also discussed in the study of the TASEP with disordered hopping
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Fig. 2. Typical time evolution of the particles from the first to 100th in the TASEP with the step
initial condition. The hopping rate of all particles is 0.9 (q = 0.1) except the four defect particles (the
first, 25th, 50th and 75th particles) whose hopping rate is 0.8 (q̄ = 0.2). (a) illustrates the whole time
evolution from t = 0 through 3000. Its closeup around t = 200 and t = 3000 is shown in (b) and (c)
respectively.

rates.(45−47) In fact, as will be explained in the next section, the position fluctuation
of a tagged particle also changes with time corresponding to the change of the
configuration.

3. MAIN RESULTS

3.1. Multi-Time Distributions

Our whole discussions in this article are based on a fact that the tagged
particle problem for the step initial condition has a nice combinatorial structure
which admits us to obtain a closed expression for the multi-time joint distribution
in the form of the Fredholm determinant. The results are summarized in the
following theorem. The proof will be presented in Sec. 4.

Note that due to the rule of the TASEP, the particle labeled M cannot
move when t < M . Thus, throughout the article, we consider the multi-time
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function (2.1) under the condition

ti ≥ M. (3.1)

Theorem 1. When (3.1) holds,

Prob (L(t1, M) ≥ �1, L(t2, M) ≥ �2, . . . , L(tm, M) ≥ �m) = det (1 + K g) .

(3.2)
Here det(1 + K g) is the Fredholm determinant defined as

det(1 + K g)

=
∞∑

k=0

1

k!

m∑

n1=1

∞∑

x1=−∞
· · ·

m∑

nk=1

∞∑

xk=−∞

×g(tn1 ; x1) · · · g(tnk ; xk) det
(
K

(
tnl , xl ; tnl′ , xl ′

))k

l,l ′=1
, (3.3)

where

g(tn; x) = −χ(tn−M+1−�n ,∞)(x), (n = 1, 2, . . . , m),

χ(a,b)(x) =
{

1, if a < x < b,

0, otherwise,
(3.4)

and the kernel K (t1, x1; t2, x2) is given by

K (t1, x1; t2, x2) = K̃ (t1, x1; t2, x2) − φt1,t2 (x1, x2), (3.5)

K̃ (t1, x1; t2, x2) = 1

(2π i)2

∫

CR1

dz1

z1

∫

CR2

dz2

z2

z1

z1 − z2

(1 + 1/z2)t2−M+1

(1 + 1/z1)t1−M+1

×
M∏

i=1

1 − qi − qi z2

1 − qi − qi z1

zx2
2

zx1
1

, (3.6)

φt1,t2 (x1, x2) =
⎧
⎨

⎩

1

2π i

∫

C1

dz

z

(
1 + 1

z

)t2−t1

zx2−x1 , t1 < t2,

0, t1 ≥ t2.
(3.7)

Here CR in (3.6) and (3.7) denotes a contour enclosing the origin anticlockwise
with radius R and Ri (i = 1, 2) in (3.6) satisfy the conditions R2 < R1 and
1 < R1 < (1 − qi )/qi .

3.2. Scaling Limit 1 (M → ∞)

Using the results in Theorem 1, one can study the asymptotics of the joint
distribution. In this subsection, we consider the scaling limit such that both t and
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M go to infinity with their ratio

u = t/M (3.8)

fixed. u represents the scaled time. Notice that we also take the limit of the label
of the tagged particle M . This may sound strange if the particle we are focusing
on is varied as M goes to infinity. Rather we think that the results below give the
asymptotic behaviors of the path statistics of the tagged particle for large but finite
M which is fixed. Alternatively one might be able to interpret them as giving the
asymptotic behaviors of the path statistics of the tagged particle near a large but
finite t .

We also discuss the effect of defect particles. In particular, we consider the
situation where there are finite n defect particles with stay rates q̄i (i = 1, . . . , n)
in front of the tagged particle. For this purpose, we set the stay rate qi of i th particle
as follows. For some set {ai }i=1,...,n ⊂ {1, 2, . . . M} with n fixed, we assume

qi =
{

q̄ j , if i = a j ,

q, otherwise.
(3.9)

Note that the particle with the rate q̄ j represents the defect particle whose label is
a j whereas the remaining particles with the rate q are the normal particles.

3.2.1. Average Position

The average position of the tagged particle divided by M has a deterministic
limit as M → ∞. Let us call it A(u),

A(u) = lim
M→∞

L(t = uM, M)

M
. (3.10)

We also define q̄ = max{q̄i }. (Note that q̄ is the stay rate of the slowest defect
particle.) If q̄ > q, which is the case where the slowest defect particle is slower
than the normal particles, we obtain

A(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if u ≤ 1

1 − q
,

A2(u), if
1

1 − q
≤ u ≤ uc,

AG(u), if uc ≤ u,

(3.11)

where uc = (q̄2 − 2qq̄ + q)/(q̄ − q)2 and

A2(u) = (1 − q)u − (1 − 2q) − 2
√

q(1 − q)(u − 1), (3.12)

AG(u) = (1 − q̄)u − (1 − q̄)q̄

q̄ − q
. (3.13)
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Fig. 3. Average position of the tagged particle. The thick line shows (3.11). We divide this line into
four regions, where u is near 1/(1 − q), 1/(1 − q) < u < uc , u is near uc , and uc < u. We denote
them as region 1, 2, 3, and 4 respectively.

A2(u) can be understood from Theorem 1.1. in Ref. 17. If q̄ ≤ q, the average
position is represented as only the first and second cases in (3.11). (uc and AG(u)
do not appear in the case.) Note that A2(u) does not depend on the stay rate q̄ of
the slowest defect particle whereas AG(u) does. A(u) is illustrated in Fig. 3.

Next we consider the position fluctuations of the tagged particle around the
average position. There are four typical regions shown in Fig. 3. In each region, we
can obtain the result on the position fluctuations by focusing on a point within the
region and taking a proper scaling around the point. Note that in Fig. 3, the regions
2 and 4 spread in the form of a line whereas the regions 1 and 3 are point-like.
Thus, in the region 1 (resp. 3), we always consider the fluctuation property around
the point 1/(1 − q) (resp. uc = (q̄2 − 2qq̄ + q)/(q̄ − q)2).

3.2.2. Region 1 (u = 1/(1 − q))

This is the region where the tagged particle just starts to move. This corre-
sponds to u = 1/(1 − q). We set

ti = M

1 − q
+ D1 M

1
2 τi , (3.14)

where D1 = √
q/(1 − q). Note that the time ti (3.14) is approximately equal to

the time on which some leftmost holes arrive at the site occupied by the tagged
particle. One easily finds that the arrival time can be scaled as in (3.14) which is
the same scaling as the central limit theorem.

Applying the scaling to Theorem 1, we have the theorem as follows. The
proof will be given in Sec. 5.1.
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Theorem 2-1.

lim
M→∞

Prob(L(t1, M) ≥ �1, L(t2, M) ≥ �2, . . . , L(tm, M) ≥ �m)=det (1+K1g1) .

(3.15)

Here the Fredholm determinant in the right hand side is defined in (3.3) where
g1(τi , x) = −χ(−∞,�i )(x). χ(a,b)(x) is defined in (3.4). The kernel is given by

K1(τ1, x1; τ2, x2)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

m=0

ψ1(x1 − m, τ1)ψ2(x2 − m, τ2), τ1 ≥ τ2,

−
∞∑

m=0

ψ1(x1 + m + 1, τ1)ψ2(x2 + m + 1, τ2), τ1 < τ2.

(3.16)

Here ψ1(x1, τ1) can be represented by use of the parabolic cylinder function Dn(x)
in Ref. 48 as

ψ1(x1, τ1) = 1

2π i

∫ i∞+ε

−i∞+ε

dze
z2

2 −τ1z zx1−1 = e− x2
1
4√

2π
Dx1−1(τ ), (3.17)

where ε is taken to be positive, and

ψ2(x2, τ2) = 1

2π i

∫

C1

dw

wx2+1
e− w2

2 +τ2w =
⎧
⎨

⎩

2
−x2

2

x2!
Hx2

(
τ√
2

)
, x2 ≥ 0,

0, x2 < 0,

(3.18)

where C1 in (3.18) represents the contour enclosing the origin anticlockwise with
radius 1, and Hn(x) is the Hermite polynomial with degree n. (48)

The special case where τ1 = · · · = τm = 0 has appeared in the distribution
of the height fluctuation in the “critical regime” of the oriented digital boiling
model. (30) Recently the distribution in one time case (m = 1) has been also given
in Ref. 49. Our formula above gives a generalization to the multi-time version.

In particular, the limiting distribution in the case m = 1 can be described as

lim
M→∞

Prob(L(t, M) ≥ �) =
�∑

k=0

(−1)k

k!

�−1∑

x1=0

· · ·
�−1∑

xk=0

det (K1(τ, xl ; τ, xl ′ ))
k
l,l ′=1,

(3.19)

where
K1(τ, x1; τ, x2) =

x2∑

m=0

ψ1(x1 − m, τ )ψ2(x2 − m, τ ). (3.20)

Note that in (3.19) the summation on k where k ≥ � + 1 can be omitted. Thus
in this case, we can obtain exactly the limiting probability by calculating the
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determinants with finite rank. Another expression of the kernel (3.20) has recently
appeared as the “discrete Hermite kernel” in Ref. 49. In Ref. 30, the specific values
of the probability are given in the case τ = 0.

3.2.3. Region 2 (1/(1 − q)< u < uc)

This is the region where the effect of the defect particles does not affect the
time evolution of the tagged particle and the dynamics of the ordinary TASEP is
dominant. The typical picture of the time evolution of the whole particles from 1st
to M th in this region is illustrated in Fig. 2(b). In this figure, we are interested in
the position fluctuations of the bottommost particle.

Let us scale as

t j = uM + C(u)M
2
3 τ j , (3.21)

� j = A2(u j )M − D(u)M
1
3 si , (3.22)

where 1/(1 − q) < u < uc and u j = t j/M . A2(u) is defined in (3.12) and

C(u) = 2(u − 1)
5
6

(
1 +

√
1 − q

q(u − 1)

) 1
3 (√

u − 1 −
√

q

1 − q

) 1
3

, (3.23)

D(u) = (u − 1)
1
6 q

1
2 (1 − q)

1
2

(
1 +

√
1 − q

q(u − 1)

) 2
3 (√

u − 1 −
√

q

1 − q

) 2
3

.

(3.24)

Note that the scaling exponent 1/3 in (3.22) also appears in an anomalous diffusion
of the tagged particle. (10,11) The scaling exponents 2/3 and 1/3 in (3.21) and (3.22)
are characteristic of the one-dimensional KPZ universality class. They are expected
to be universal for all models belonging to the KPZ universality class.

Under the scaling defined above, we get the following theorem for the scaling
function. This function is also universal but may depend on various elements such
as initial conditions and the effect of the defect particles. For example, as we will
show in Theorem 2-3, the scaling function in the region 3 is different from that
in region 2 although we take the same scaling (3.21) and (3.22) in both regions.
Thus, the function provides more detailed viewpoint in the KPZ universality than
the scaling exponents. The proof of this theorem will be given in Sec. 5.2.

Theorem 2-2.

lim
M→∞

Prob (L(t1, M) ≥ �1, L(t2, M) ≥ �2, . . . , L(tm, M) ≥ �m)=det (1 + K2G) .

(3.25)
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Here the right hand side is the Fredholm determinant defined as

det (1 + K2G)

=
∞∑

k=0

1

k!

m∑

n1=1

∫ ∞

−∞
dξ1 · · ·

m∑

nk=1

∫ ∞

−∞
dξk G(τn1 , ξ1) · · ·G(τnk , ξk)

× det
(
K2

(
τnl , ξl ; τnl′ , ξl ′

))k

l,l ′=1
(3.26)

where G(τ j , ξ ) ( j = 1, . . . , m) are defined in terms of χ(a,b)(x) (3.4), as

G(τ j , ξ ) = −χ(s j ,∞)(ξ ) ( j = 1, . . . , m), (3.27)

and the kernel K2(τ1, ξ1; τ2, ξ2) is given by

K2(τ1, ξ1; τ2, ξ2) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ ∞

0
dλe−λ(τ1−τ2)Ai(ξ1 + λ)Ai(ξ2 + λ), τ1 ≥ τ2,

−
∫ 0

−∞
dλe−λ(τ1−τ2)Ai(ξ1 + λ)Ai(ξ2 + λ), τ1 < τ2.

(3.28)

The kernelK2 is called the extended Airy kernel. (50,51) The process character-
ized by the Fredholm determinant with this kernel is called the Airy process. (38,52)

This process appears as the limiting process of the largest eigenvalue in Dyson’s
Brownian motion model (53) of the unitary class. The model is described as N × N
Hermitian matrix where each independent element of H obeys the Ornstein-
Uhlenbeck process. The transition probability density P(Hi ; Hj ; τ ) from matrix
Hi to Hj during τ is given by

P(Hi ; Hj ; τ ) = Zτ exp

(
−tr

{
Hj − e−τ Hi

}2

1 − e−2τ

)
, (3.29)

where Zτ is the normalization constant. If we choose the initial matrix H0 to be
GUE random matrix, the joint density function of the probability that matrix Hj

is at time t j is represented as the Hermitian multi-matrix model,

P (H1, t1; . . . ; Hm, tm)

= Z
m∏

j=1

exp

(
−tr

{
Hj − et j−1−t j Hj−1

}2

1 − e2(t j−1−t j )

)
exp

( − trH 2
0

)
, (3.30)

where Z is the normalization constant. Let l (i) be the largest eigenvalue of Hi and
we consider the quantity,

Prob
(
l (1) ≤ a1, . . . , l (m) ≤ am

)
. (3.31)
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When we set

ti = τi

N
1
3

, ai =
√

2N + si√
2N

1
6

, (3.32)

the limiting distribution (3.31) is described as

lim
N→∞

Prob
(
l (1) ≤ a1, . . . , l (m) ≤ am

) = det (1 + K2G) . (3.33)

In the case m = 1, the distribution is the GUE Tracy-Widom distribution. (21)

Hence our Theorem 2-2 says that in the appropriate scaling limit the dynamics
of the tagged particle in this region is equivalent to the dynamics of the largest
eigenvalue of Dyson’s Brownian motion of the unitary type. In the context of the
one dimensional KPZ universality class, the Airy process has already appeared in
the study of the polynuclear growth (PNG) model. In Refs. 38, 52, the process has
first appeared as the equal-time multi-point height fluctuation. Recently in Ref. 34,
it has been shown that the process also describes the correlations among any
“space-like” points in the space-time plane. Our result is closely related to the
latter situation.

3.2.4. Region 3 (u = uc)

This region is the border between the region 2 where the normal particles in
the TASEP are dominant, and the region 4 where only the finite number of defect
particles are dominant.

First we consider the case where the stay rates q̄ j ( j = 1, 2, . . . , n) of the
defect particles are distinct. Taking the same scaling as (3.21)–(3.24) with u = uc,
we obtain the following theorem.

Theorem 2-3.

lim
M→∞

Prob(L(t1, M) ≥ �1, L(t2, M) ≥ �2, · · · , L(tm, M) ≥ �m) = det (1+K3G) ,

(3.34)

where the Fredholm determinant and G(τ j , ξ ) in the right hand side are defined
in (3.26) and (3.27) respectively. The kernel is given by

K3(τ1, ξ1; τ2, ξ2)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K2(τ1, ξ1; τ2, ξ2) + Ai(ξ2)
∫ ∞

0
dλeτ1λAi(ξ1 − λ), τ1 < 0,

K2(τ1, ξ1; τ2, ξ2) − Ai(ξ2)
∫ ∞

0
dλe−τ1λAi(ξ1 + λ)

+Ai(ξ2)e− τ3
1
3 +ξ1τ2 , τ1 > 0,

(3.35)

where K2 is the extended Airy kernel (3.28).
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This kernel has appeared in Refs. 54, 55 in the study of the height fluctuation
property of the PNG model with external sources. When τ1 = · · · = τm = 0, it
has been known that the Fredholm determinant of this kernel is described as the
distribution of the larger of the largest eigenvalues in two independent GOEs,
which is denoted as GOE2. (56,57) On the other hand, when τ1 = · · · = τm = −∞,
the Fredholm determinant becomes the GUE Tracy-Widom distribution. Thus
(3.34) describes the transition of the largest eigenvalue distribution between GUE
and GOE2.

Next we consider the situation where the hopping rates q̄ j ( j = 1, 2, . . . , n)
are more or less the same. In addition to the scaling (3.21)–(3.24), we set the
hopping rate of the defect particles as

q̄i = q̄ − q̄(1 − q̄)
ηi

D(u)M
1
3

, (3.36)

where D(u) is defined in (3.24). Note that the parameters ηi (≥ 0)(i = 1, . . . , n)
characterize the inhomogeneity of the hopping rates and the case η1 = η2 = · · · =
ηn = 0 corresponds to the situation where the hopping rates degenerate completely.

Under these settings, we obtain the following theorem.

Theorem 2-3′

lim
M→∞

Prob (L(t1, M) ≥ �1, L(t2, M) ≥ �2, . . . , L(tm, M) ≥ �m)=det(1+K′
3G),

(3.37)

where the Fredholm determinant and G(τ j , ξ ) in the right hand side are defined
in (3.26) and (3.27) respectively and the kernel is given by

K′
3(τ1, ξ1; τ2, ξ2)

= K2(τ1, ξ1; τ2, ξ2) +
n∑

j=1

1

2π

∫

�3

dw1 exp

(
iξ1w1 + iw3

1

3

) j∏

k=1

1

ηk − τ1 + iw1

× 1

2π

∫ ∞

−∞
dw2 exp

(
iξ2w2 + iw3

2

3

) j−1∏

k=1

(ηk − τ2 + iw2), (3.38)

where the contour �3 runs from −∞ to ∞ passing the down side of the points
i(ηk − τ1) (k = 1, . . . , n).

In the case m = 1, this Fredholm determinant has appeared in Refs. 42, 43,
58. Note that if we set η j = 0 for some j and ηk = ∞ for k �= j , we can realize the
situation where the maximum of qi (i = 1, 2, . . . , n) is unique such as the former
case. Indeed in the setting above, the kernel K′

3 (3.38) is reduced to K3 (3.35). In
that sense, the theorem is the generalization of Theorem 2-3. Later we will give
only the proof of the theorem in Sec. 5.2.
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The Fredholm determinant (3.37) also describes the limiting largest eigen-
value distribution in the following multi-matrix model. Let {Hi }i=1,...,m be the
N × N Hermitian matrices. Analogous to (3.30), the joint density function of the
model is defined as

P (H1, t1; . . . ; Hm, tm)

= ZV exp
(−trH 2

0

) m∏

j=1

exp

(
−tr

{
Hj − et j−1−t j Hj−1

}2

1 − e2(t j−1−t j )

)
exp(trV Hm). (3.39)

Here ZV is the normalization constant and ti (i = 0, . . . , m) are parameters of the
model such that ti−1 − ti gauges the strength of the connection between matrix
Hi−1 and Hi . V = diag(v1, v2, . . . , vn, 0, 0, . . . . . .) represents the external source
with rank n of the model. Under the scalings (3.32) and

vi =
√

2N

(
1 − ηi

N
1
3

)
, (3.40)

the limiting joint distribution of the largest eigenvalues l (i) of Hi (i = 1, . . . , m)
is described as the Fredholm determinant (3.37),

lim
N→∞

Prob
(
l (1) ≤ a1, . . . , l (m) ≤ am

) = det(1 + K′
3G). (3.41)

In the case n = 1, (3.41) was shown in Refs. 55. We can also show this equation
for the general n case in a similar manner.

3.2.5. Region 4 (uc < u)

This is the region where the effect of the defect particles has become dominant
for the dynamics of the tagged particle.

As in the region 3, we first consider the case q̄1 �= q̄2 �= · · · �= q̄n . In this
case, one can expect that the dynamics is effectively the same as that of the slowest
defect particle with stay rate q̄ = max(q̄ j ). To see nontrivial correlations, times
t j ( j = 1, . . . , m) should be macroscopically separated. We set

� j = AG(u j )M − DG(u j )M
1
2 s j , (3.42)

where u j = t j/M , AG(u j ) is given in (3.13), and

DG(u j ) = 1 − q̄

q̄

(
2q̄3

1 − q̄
(u j − 1) − 2q̄3q(1 − q)

(q̄ − q)2(1 − q̄)

) 1
2

. (3.43)

Under this setting and introducing the parameter τ j such that

eτ j = DG(u j ), (3.44)

we get the theorem as follows.
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Theorem 2-4.

lim
M→∞

Prob (L(t1, M) ≥ �1, L(t2, M) ≥ �2, . . . , L(tm, M) ≥ �m)=det (1+KGG) ,

(3.45)

where the Fredholm determinant and G(τ j , ξ ) are defined in (3.26) and (3.27)
respectively and

KG(τ1, ξ1; τ2, ξ2) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp
(−ξ 2

1

)
√

π
−

exp
(
− (ξ2−eτ1−τ2 ξ1)2

1−e2(τ1−τ2)

)

√
π

(
1 − e2(τ1−τ2)

) , for τ1 < τ2,

exp
(−ξ 2

1

)
√

π
, for τ1 ≥ τ2.

(3.46)

This kernel represents the propagation of a Brownian particle (a particle
obeying the Ornstein-Uhlenbeck process). Actually the two point distribution is
calculated as

lim
M→∞

Prob (L(t1, M) ≥ �1, L(t2, M) ≥ �2)

= 1 −
∫ ∞

s1

dξ1Kn(τ1, ξ1; τ1, ξ1) −
∫ ∞

s2

dξ2Kn(τ2, ξ2; τ2, ξ2)

+1

2

∫ ∞

s1

dξ1

∫ ∞

s2

dξ2

∣∣∣∣∣
Kn(τ1, ξ1; τ1, ξ1) Kn(τ1, ξ1; τ2, ξ2)

Kn(τ2, ξ2; τ1, ξ1) Kn(τ2, ξ2; τ2, ξ2)

∣∣∣∣∣

+1

2

∫ ∞

s1

dξ1

∫ ∞

s2

dξ2

∣∣∣∣∣
Kn(τ2, ξ2; τ2, ξ2) Kn(τ2, ξ2; τ1, ξ1)

Kn(τ1, ξ1; τ2, ξ2) Kn(τ1, ξ1; τ1, ξ1)

∣∣∣∣∣

=
∫ s1

−∞
dξ1

∫ s2

−∞
dξ2

e
−(ξ2−eτ1−τ2 ξ1)2

1−e2(τ1−τ2)

√
π (1 − e2(τ1−τ2))

e−ξ 2
1√

π
. (3.47)

Next we consider the case q̄1 ∼ q̄2 ∼ · · · ∼ q̄n . The typical picture of the
time evolution of the particles is depicted in Fig. 2(c). In this figure, it seems that
four groups of which each top particle is the defect particle are formed and each
group behaves like one particle in the TASEP. Thus in the region, one can expect
that the system is effectively the same as n TASEP particles.

In addition to the scaling (3.42)–(3.44), we also set

q̄i = q̄ − q̄(1 − q̄)
2εi

M
1
2

. (3.48)
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Note that the scaling exponent 1/2 in (3.42) is the same as that in the case of the
central limit theorem. However the following theorem indicates that the limiting
process of L(t, M) depends on the number n of the defect particles. Note that this
is not the information which the scaling exponent can detect.

Theorem 2-4′

lim
M→∞

Prob (L(t1, M) ≥ �1, L(t2, M) ≥ �2, . . . , L(tm, M)≥ �m)=det
(
1+K(n)G

)
.

(3.49)

The Fredholm determinant and G(τ j , ξ ) in the right hand side are defined in (3.26)
and (3.27) respectively and the kernel is given by

K(n)(τ1, x1; τ2, x2) = K̃ (n)(τ1, x1; τ2, x2) − φ(τ1, x1; τ2, x2), (3.50)

where

K̃ (n)(τ1, ξ1; τ2, ξ2) = 2

(2π i)2

∫

�

dw1

∫

γ

dw2
exp(w2

2 − w2
1 − 2w2ξ2 + 2w1ξ1)

eτ1−τ2w2 − w1

×
n∏

j=1

e−τ2w2 + ε j

e−τ1w1 + ε j
, (3.51)

φ(τ1, ξ1; τ2, ξ2) =

⎧
⎪⎨

⎪⎩

1√
π (1 − e2(τ1−τ2))

exp

(
− (x2 − eτ1−τ2ξ1)2

1 − e2(τ1−τ2)

)
, for τ1 < τ2,

0, for τ1 ≥ τ2.

(3.52)

In (3.51), � represents the contour enclosing −eτ1εi (i = 1, . . . , n) anticlockwise
and γ represents the arbitrary path running from −i∞ to i∞.

The kernel above has been given in Refs. 55, 59. As in Theorem 2–3′, it is
reduced to KG (3.46) if we set ε = 0 for some j and εk = ∞ for k �= j . Thus,
later we will give only the proof of this theorem in Sec. 5.3.

The Fredholm determinant also describes the joint distribution function of
the largest eigenvalue in the Hermitian multi-matrix model (3.39), where we
assume the rank of Hj ( j = 1, . . . , m) is n and V = diag(ε1, ε2, . . . , εn). The
joint distribution of the largest eigenvalues l (i) of Hi can be described as the
Fredholm determinant in the above theorem,

Prob
(
l (1) ≤ s1, . . . , l (m) ≤ sm

) = det
(
1 + K(n)G

)
. (3.53)

Note that in the equation above, we do not take the limit as the rank n goes to
infinity.
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3.3. Scaling Limit 2 (M Fixed)

Here we consider another scaling limit such that M is fixed and t goes to
infinity. We set

ti = e2τi T, (3.54)

�i = (1 − q)ti − si

√
2q(1 − q)ti . (3.55)

qi = q −
√

2q(1 − q)

T
εi , (3.56)

and consider the asymptotic behavior as T goes to infinity. We get the following
theorem. The proof of the theorem will be given in Sec. 5.4.

Theorem 3.

lim
T →∞

Prob (L(t1, M)≥ �1, L(t2, M)≥ �2, . . . , L(tm, M)≥ �m)=det
(
1+K(M)G

)
,

(3.57)

where the right hand side is the same as that of (3.49) with n = M.

3.4. Continuous Limit

In this subsection, we consider the continuous time version of the TASEP
which is also usually discussed in the study of the ASEP. In the case without defect
particles, the rule is defined as follows. Let t̃ be the time variable which can take
any positive real number. Between time t̃ and t̃ + dt̃ , a particle can hop to its right
neighboring site with probability dt̃ if the site is empty. If the site is occupied, the
particle stays at the same site with probability 1.

We easily find that the continuous time version can be realized from the
discrete time version defined in Sec. 2 by taking the limit,

1 − q → 0, t → ∞, (3.58)

with t̃ = (1 − q)t fixed. In addition, the scaling limit in Sec. 3.2 can also be studied
by taking the t̃ → ∞, M → ∞ limit with their ratio

ũ = t̃/M, (3.59)

fixed. Applying (3.58) and (3.59) to the Theorems in Sec. 3.2, we can rewrite the
theorems for the continuous time TASEP. Here we show only the result which
corresponds to Theorem 2-2. Analogous to (3.21) and (3.22), we scale time t̃ j and
the position � j as

t̃ j = ũM + C (c)(ũ)M
2
3 τ j , (3.60)

� j = A(c)
2 (ũ j )M − D(c)(ũ)M

1
3 si , (3.61)
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where 1 < ũ and

A(c)
2 (ũ) = (

√
ũ − 1)2, (3.62)

C (c)(ũ) = 2ũ
5
6 (

√
ũ − 1)

1
3 , (3.63)

D(c)(ũ) = ũ
1
6 (

√
ũ − 1)

2
3 . (3.64)

Then we have

lim
M→∞

Prob
(
L(t̃1, M)≥ �1, L(t̃2, M)≥ �2, . . . , L(t̃m, M)≥ �m

)=det (1+K2G) .

(3.65)

Here the right hand side is defined in (3.26)–(3.28).

4. FROM THE TASEP TO THE SCHUR PROCESS

In this section, we discuss a relationship between the time evolution of a
tagged particle in the TASEP with the step initial condition described in Sec. 2
and the stochastic growth of a Young diagram(32−35) which turns out to be a special
case of the Schur process. (36,37) In the last part of this section, the proof of Theorem
1 in Sec. 3.1 is obtained.

In the study of the TASEP, the technique using the enumeration of Young
diagrams was used in Ref. 17 to study the current fluctuation. The discussion in Ref.
17 was based on the relation of the TASEP to the directed polymer problem on
a matrix of which the elements obey the geometric distribution. In this section,
on the other hand, we consider the correspondence between the directed polymer
problem on a 01 matrix(28−31) and the TASEP, which is a similar but different
mapping. For the analysis of the tagged particle problem, the mapping is more
natural and convenient.

4.1. TASEP and 01 Matrix

Let us consider an ensemble of N × M 01 matrices {a(i, j)}i=1,...,N , j=1,...,M ,
whose matrix elements are either 0 or 1. All matrix elements are independent
random variables and each element obeys the Bernoulli distribution,

a(i, M + 1 − j) =
{

0, with probability 1 − q j ,

1, with probability q j .
(4.1)

Here 1 − q j is taken to be the same value as the hopping rate of the j th particle
of the TASEP defined in Sec. 2. Each realization of the 01 matrix a(i, j) can be
translated to a time evolution of the TASEP as follows.
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a(i, M + 1 − j) = 0 (resp. 1): Between time i + j − 2 and i + j − 1, the
j th particle tries to hop to the right neighboring site (resp. stays at the same site).
When the right neighboring site is occupied at time i + j − 2, particle can not
move due to the exclusion effect even if a(i, M + 1 − j) = 0.

Since a(i, M + 1 − j) = 0 could mean both hopping or stay depending on
whether the target site is occupied or empty, the mapping from a 01 matrix to the
time evolution of the TASEP is not one-to-one. In Fig. 4, we depict an example
of the time evolution in the TASEP and the corresponding two 01 matrices. Note
that in the step initial condition, the j th particle cannot move until time j − 1 and
that the time evolution of the j th particle at time step between i and i + 1 does
not depend on that of the j − 1th particle at the time step. Thus one finds that the
01 matrix defined above has all informations needed for the time evolution of the
M th particle from time 0 through M + N − 1.

Let us define a left-down path π (N , M) of a N × M 01 matrix
{a(i, j)}i=1,...,N , j=1,...,M by

π (N , M) = {{(ik, jk)}1≤k |a(ik, jk) = 1, 1 ≤ i1 < i2 < . . . ≤ N ,

M ≥ j1 ≥ j2 ≥ . . . ≥ 1} . (4.2)

Note that the row indices ik (k = 1, . . .) are strictly increasing while the column
indices jk (k = 1, . . .) are weakly decreasing. In π , the position of (ik+1, jk+1) is
always located on the down side or left-down side of the position of (ik, jk) in the
01 matrix. We also define the quantity G(N , M) by

G(N , M) = max
π(N ,M)

|π (N , M)|, (4.3)

where |π | denotes i.e., the number of elements in the path π . If we regard the 01
matrix as the random media in a plane, π (N , M) as a spatial configuration of a
polymer chain, and |π (N , M)| as its energy, we can interpret (4.3) as a statistical
mechanical problem of a directed polymer. This kind of problem is studied in
Refs. 28–31.

Now we find that this maximum length of the left-down path is directly related
to the position of a tagged particle as

G(N , M) = d(N , M) (4.4)

where

d(N , M) := N − L(t = N + M − 1, M) (4.5)

represents the number of times the M th particle stays at the same site from time
0 through N + M − 1. Equation (4.4) enables us to study the dynamics of the
TASEP in terms of the 01 matrices and plays a fundamental role in our subsequent
analysis.
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We can show (4.4) in the following way. For the case M = 1 (the case where
we tag the first particle), we can easily check this equation, since G(N , 1) defined
in (4.3) is simply the total number of the value 1 in the sequence {a(k, 1)}k=1,...,N

and it is clear that this quantity represents the number of times the particle stays
from t = 0 through N .

For the case M ≥ 2, we can prove (4.4) by mathematical induction about the
row N . Here, we mainly consider only the case M = 2. For the case M ≥ 3, we
can check (4.4) in a similar fashion to this case.

When N = 1, we can check (4.4) easily for all four cases (a(1, 1) = 0, 1 and
a(1, 2) = 0, 1).

We assume that (4.4) holds for N = Na , and M = 1 and 2, i.e.,

d(Na, 1) = G(Na, 1), d(Na, 2) = G(Na, 2). (4.6)

Under this assumption, we will show that d(Na + 1, 2) = G(Na + 1, 2) as follows.
From (4.3), one easily finds

G(Na, 2) ≥ G(Na, 1), G(Na, i) ≥ G(Nb, i), (4.7)

where 1 ≤ Nb ≤ Na , and i = 1 and 2. Considering these properties, we classify
the problem into two cases,

(i)

G(Na, 2) = G(Na, 1), and a(Na + 1, 2) = 1, (4.8)

(ii)
{

G(Na, 2) > G(Na, 1) and a(N + 1, 2) = 0 or 1,

G(Na, 2) = G(Na, 1) and a(N + 1, 2) = 0.
(4.9)

The case (i) corresponds to the situation where the two particles occupy the
neighboring sites at t = Na + 1. Thus the second particle (the tagged particle)
must stay at time step between Na + 1 and Na + 2 . Hence one finds

d(Na + 1, 2) = d(Na, 2) + 1, (4.10)

regardless of the value of a(Na + 1, 1). On the other hand, due to (4.3), (4.7)
and (4.8), we have

G(Na + 1, 2) = G(Na, 1) + a(Na + 1, 2) = G(Na, 2) + 1. (4.11)

Thus from (4.6), (4.10) and (4.11), we have for the case (i),

d(Na + 1, 2) = G(Na + 1, 2). (4.12)

The case (ii) corresponds to the situation where at t = Na + 1, the distance
between the first and the second particles is at least one site. Note that in this case
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we do not need to consider the exclusion effect of the first particle and thus the
situation is essentially the same as the case M = 1. We have

d(Na + 1, 2) = d(Na, 2) + a(Na + 1, 1). (4.13)

On the other hand, from (4.7) and (4.9) we can also check that

G(Na + 1, 2) = G(Na, 2) + a(Na + 1, 1). (4.14)

Thus we find that (4.12) holds also for the case (ii) and therefore (4.4) holds for
M = 2.

In the case M = k (k ≥ 3), we can also classify the situation into two cases as
in (i) and (ii) for M = 2, i.e., the case (i)′ where all k particles are packed and (ii)′

where the particles form several groups which are separated by some successive
empty sites. For the case (i)′, we can check (4.4) in a similar manner to the case
M = 2. For the case (ii)′, we can easily show that the case is essentially the same
as the case (i)′ for M = m which is smaller than k.

4.2. 01 Matrix and the Dual Robinson-Schensted-Knuth

Correspondence

The quantity we would like to discuss is the multi-time distribution of L(t, M),

ProbTASEP(L(t1, M) ≥ �1, L(t2, M) ≥ �2, · · · , L(tm, M) ≥ �m), (4.15)

where ProbTASEP represents the probability measure of the TASEP defined in Sec.
2. Due to the result in Sec. 4.1 (especially (4.4) and (4.5)), one finds

ProbTASEP(L(N1 + M − 1, M) ≥ �1,

L(N2 + M − 1, M) ≥ �2, . . . , L(Nm + M − 1, M) ≥ �m)

= Prob01(G(N1, M) ≤ N1 − �1,

G(N2, M) ≤ N2 − �2, . . . , G(Nm, M) ≤ Nm − �m), (4.16)

where Prob01 represents the probability measure of 01 table defined in (4.1) and
G(Ni , M) is defined in (4.4).

In this section, we further restate our problem in terms of the combinatorics
of Young tableaux. For the definitions and basic properties of Young tableaux
and related subjects, we refer the reader to Ref. 60. There is a bijective mapping
between an N × M 01 matrix and a pair (P, Q) where Pt (the transpose of P) and
Q are the semistandard Young tableaux (SSYT) with the condition that the shape
of P is the same as that of Q. The mapping is called the dual Robinson-Schensted-
Knuth (RSK) algorithm. In order to get (P, Q), we first construct a two-line array
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(a)
t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

t = 6 t = 7 t = 8

t = 9

3

14 3 2

4 3 24 3 2 1

3 2 1424 3 14 3 2 1

3 2 1414 3 2

4

4

(b)
i = 1

i = 2
i = 3

i = 4
i = 5
i = 6

j = 1 2 3 4

0

01 1 1

1 1 1

1 1

1 1

1

1 1

0

0 0

0 0

0 0 0

0

Fig. 5. (a) Example of time evolution of the TASEP and (b) one of its corresponding matrices. Note
that a set of many matrices corresponds to (a) and only one of them is shown here.

(or generalized permutation),
(

1 · · · 1 2 · · · 2 · · · N · · · N

j (1)
1 · · · j (1)

m1 j (2)
1 · · · j (2)

m2 · · · j (N )
1 · · · j (N )

m N

)
, (4.17)

where 1 ≤ j (i)
1 ≤ j (i)

2 · · · ≤ M , from the 01 matrix by listing
(

i
j

)
’s for which

a(i, j) = 1. Next, we construct P (resp. Q) by arranging on a plane the figures in
the second row (resp. the first row). Note that each positive integer constructing
P(resp. Q) is less than M(resp. N ). For details of the algorithm, see Ref. 60. The
generalized permutation and (P, Q) corresponding to the 01 table in Fig. 5(b) are
given in Fig. 6.

Now we express G(N , M) (4.3) as the quantity related to a pair (P, Q).
Let us denote the shape of P (or Q) by the Young diagram, λ(N , M) =
(λ1(N , M), λ2(N , M), . . .) where λi ≥ 0 represents the length of i th row of the
tableaux P (or Q). In the example of Fig. 6(b), we see λ = (4, 3, 2, 2, 2). Then we
have

G(N , M) = λ′
1(N , M). (4.18)

Here λ′ = (λ′
1, λ

′
2, . . .) means the transpose of the Young diagram λ. Thus

λ′
1(N , M) is equal to the length of the first column of λ(N , M).

Equation (4.18) may be shown by examining the dual RSK algorithm directly
but is also understood as follows. For the sequence of the numbers (i1, i2, . . .) where
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(a)

i
j

1 1 1 2 2 2 3 3 4 4 5 6 6
1 3 4 1 2 3 2 4 1 4 3 1 2

(b)

3

1 111 111
2

11

1234
123

21
1
3

4
4

1113
22

34
4

2

5
66

Q

P13 134 1 41
1

Fig. 6. (a) Generalized permutation corresponding to Fig. 5(b). We arrange (i, j) where a(i, j) = 1
following the rule in Ref. 60. (b) The pair (P, Q) obtained from (a) by the dual RSK algorithm.

i ∈ (0, 1, 2, . . .), we define a nondecreasing (resp. nonincreasing) subsequence
( j1, j2, . . .) such that j1 ≤ j2 ≤ . . . (resp. j1 ≥ j2 ≥ . . .). From the construction
it is not difficult to see that G(N , M) is equivalent to the length of the longest
nonincreasing subsequence of the second row ( j (1)

1 , . . . , j (1)
m1 , . . . , j (N )

1 , . . . , j (N )
m N )

in a generalized permutation (4.17). Thus, G(N , M) is also regarded as the
length of the longest nondecreasing subsequence of the opposite sequence
( j (N )

m N , . . . , j (N )
1 , . . . , j (1)

m1 , . . . , j (1)
1 ) of the second row in (4.17). We can apply

the (normal) RSK algorithm(60) to this reverse sequence to obtain a SSYT. Let
us denote the SSYT by R. Then (4.18) is a consequence of the facts that the
length of the longest nondecreasing sequence in the reverse sequence is equal to
the length of the first row of R (this is known as a property of the normal RSK
algorithm(17,20)) and the symmetry property,

Pt = R, (4.19)

whose proof can be found in Appendix A of Ref. 61. Notice that in the example
of Fig. 5(a), L(9, 4) = 1 thus d(6, 4) = 5 while in Fig. 6(b), λ′

1 = 5.
Thus from (4.18), we get

Prob01(G(N1, M) ≤ N1−�1, G(N2, M) ≤ N2−�2, . . . , G(Nm, M) ≤ Nm −�m)

=Probλ(λ′
1(N1, M)≤ N1−�1, λ′

1(N2, M)≤ N2−�2, . . . , λ
′
1(Nm, M)≤ Nm−�m).

(4.20)

Here Probλ in the right hand side represents the probability measure of the set of
Young diagrams obtained by the dual RSK algorithm from the 01 matrix defined
in (4.1) and λ(Ni , M) means the Young diagram obtained by applying the dual
RSK algorithm to the Ni × M 01 submatrix {a(i, j)}1≤i≤Ni ,1≤ j≤M of the N × M
01 matrix (4.1).
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λ(1, 4) λ(2, 4) λ(3, 4) λ(4, 4) λ(5, 4) λ(6, 4)

1 0 1 1 1 0 1 1
1 1 1 0

1 0 1 1
1 1 1 0
0 1 0 1

1 0 1 1
1 1 1 0
0 1 0 1

01 0 1

1 0 1 1
1 1 1 0
0 1 0 1

01 0 1
0 0 1 0

1 0 1 1
1 1 1 0
0 1 0 1

01 0 1
0 0 1 0
1 1 0 0

Fig. 7. Growth of Young diagram obtained from Fig. 5(b) by the dual RSK algorithm. The diagrams
λ(i, 4) (1 = 1, . . . , 6) are obtained from the submatrices {a( j, k)} j=1,...,i,k=1,...,4 of Fig. 5(b). The set
of the diagrams {λ(i, 4)}i=1,...,6 corresponds to the Q tableaux in Fig. 6(b).

From (4.16) and (4.20), we managed to interpret the time evolution of a
tagged particle in the TASEP as the time evolution of λ′

1, the length of the first
column, regarding Ni as a time parameter.

4.3. Growth of Young Diagrams and Schur Process

In order to investigate the right hand side of (4.20), we consider the following
probability,

Probλ

(
λ(1, M) = λ(1), λ(2, M) = λ(2), . . . , λ(N , M) = λ(N ) = λ

)
(4.21)

for a given set of Young diagrams, {λ(k)}k=1,...,N . This equation describes the growth
of a Young diagram. Eq. (4.21) represents the joint distribution of them. Figure 7
illustrates the growth of Young diagram which corresponds to Fig. 5(b). Notice
that from (4.4) and (4.18), the growth of λ′

1(i, M) describes the time evolution of
M th particle in the TASEP. Let us denote the Q(k) as the part of the Q tableau
obtained by picking up only the symbols 1, 2, . . . , i . From the rule of the dual RSK
algorithm, (60) we find that Q(k) is equivalent to the Q tableau obtained by applying
the dual RSK algorithm to the the submatrix {a(i, j)i=1,...,k, j=1,...,M}. Thus one has

sh
(
Q(i)

) = λ(i, M), (4.22)

where sh(Q(i)) denotes the shape of Q(i). Hence the Q tableau records
the growth of Young diagram, that is, it one-to-one corresponds to the set of
the Young diagrams {λ(i, M)}i=1,...,N . Compare the tableau Q in Fig. 6(b) with
{λ(i, M)}i=1,...,6 in Fig. 7. We can recognize that sh(Q(i)) constructed from the
tableau Q in Fig. 6(b) is equivalent to λ(i, M) in Fig. 7. Hence we have

Probλ

(
λ(1, M) = λ(1), λ(2, M) = λ(2), . . . , λ(N , M) = λ(N )

)

= Prob{P,Q}
(
sh

(
Q(k)

) = λ(k), k = 1, . . . , N
)
. (4.23)
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Here Prob{P,Q} represents the probability measure on the set of the pairs {P, Q}
obtained by the dual RSK algorithm from the N × M 01 matrices defined in (4.1).
Hence it is found that the growth process of the Young diagram is characterized
by the Q tableau in the dual RSK correspondence. This type of growth process
has been also discussed in Refs. 32–35.

Remembering P is constructed from the second row of a generalized permu-
tation, we find that the symbol j in P represents the column index of the element
of the 01 matrix where a(i, j) = 1. Thus the total number of js in P is equal to
the total number of the figure 1 in the j th column of the 01 matrix. Hence, for a
given P ′, one finds

Prob{P,Q}
(
P = P ′, sh

(
Q(k)

) = λ(k)(k = 1, . . . , N )
)

=

⎧
⎪⎪⎨

⎪⎪⎩

q1(P ′)
M q2(P ′)

M−1 · · · qM(P ′)
1 × (1 − qM )N−1(P ′)(1 − qM−1)N−2(P ′) · · ·

(1 − q1)N−M(P ′), if λ(1)and λ(i+1)/λ(i) (i = 1, . . . , N − 1) have no two
squares in the same column,

0, otherwise.

(4.24)

where i(P ′) means the total number of the symbol i in P ′. Applying the above
equation to the combinatorial definition of the Schur function,

sλ/µ(a1, . . . , aN ) =
∑

S

a1(S)
1 . . . aN (S)

N , (4.25)

where the summation is taken to all SSYT S with shape λ/µ, we have

Prob{P,Q}
(
sh(Q(k)

) = λ(k), k = 1, . . . , N )

=
∑

P ′
Prob{P,Q}

(
P = P ′, sh

(
Q(k)

) = λ(k), k = 1, . . . , N
)

= (1 − q1)N . . . (1 − qM )N sλ′(N ) (pM , . . . , p1)

× sλ(1) (1, 0, . . .)sλ(2)/λ(1) (1, 0, . . .) × · · · × sλ(N )/λ(N−1) (1, 0, . . .), (4.26)

where pi = qi/(1 − qi ). The factor sλ(1) (1, 0, . . .) . . . ensures that the probability
is zero unless λ(1) and λ(i+1)/λ(i) (i = 1, . . . , N − 1) have no two squares in the
same column. Thus combining (4.23) with (4.26), we finally find

Probλ

(
λ(1, M) = λ(1), λ(2, M) = λ(2), . . . , λ(N , M) = λ(N )

)

= (1 − q1)N . . . (1 − qM )N sλ′(N ) (pM , . . . , p1)

×sλ(1) (1, 0, . . .)sλ(2)/λ(1) (1, 0, . . .) × · · · × sλ(N )/λ(N−1) (1, 0, . . .). (4.27)

This measure is the special case of the joint distribution function in the Schur
process. (36,37) Since the Schur function is expressed as a determinant, the
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function (4.27) is described as a product of determinants. Furthermore, it is known
that the process has a remarkable mathematical structure that the correlation func-
tion of {λ( j)

i }i=1,2,..., j=1,...N can be expressed as a determinant and its scaling
limit can be discussed exactly. The Schur process also appears in other fields of
physics and mathematics such as random growth process, (38) melting problem of
a three-dimensional crystal, (62) random tiling model, (63) and so on.

4.4. Proof of Theorem 1

From (4.16), (4.20) and (4.27), we find

ProbTASEP(L(t1, M) ≥ �1, L(t2, M) ≥ �2, . . . , L(tm, M) ≥ �m)

= ProbSP(λ′
1(N1, M) ≤ N1 − �1, λ′

1(N2, M) ≤ N2 − �2, . . . ,

λ′
1(Nm, M) ≤ Nm − �m). (4.28)

Here ProbSP represents the probabilistic measure of the Schur process (4.26).
In general, the Schur process is defined as follows. For the set of the Young

diagrams such that

λ(1) ⊃ µ(1) ⊂ λ(2) ⊃ µ(2) · · · ⊃ µ(N−1) ⊂ λ(N ), (4.29)

the following weight is assigned

sλ(1) (ρ+
0 )sλ(1)/µ(1) (ρ−

1 )sλ(2)/µ(1) (ρ+
1 ) · · · sλ(N )/µ(N−1) (ρ+

N−1)sλ(N ) (ρ−
N ). (4.30)

Here sρ/µ(ρ) is the Schur function with the specialization of algebra ρ. In our
case, we notice only two cases

sλ/µ(ρ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sλ/µ(a1, . . . , aN ), for ρ = ρ(z) =
N∏

j=1

1

1 − a j z
,

sλ′/µ′(a1, . . . , aN ), for ρ = ρ(z) =
N∏

j=1

(1 + a j z),

(4.31)

where sλ/µ(a1, . . . , aN ) is defined in (4.25). Substituting to (4.29),

ρ−
i (z) = 1 + z, (1 ≤ i ≤ N − 1),

ρ−
N =

M∏

i=1

1

1 − pi z
,

ρ+
j (z) = 1, (0 ≤ j ≤ N − 1), (4.32)

where pi = qi/(1 − qi ) and applying Theorem 1 in Ref. 36 or Theorem 2.2 in Ref.
37 to this case, we finally obtain the Fredholm determinant representation (3.3)–
(3.7) of (4.28).
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5. ASYMPTOTICS

In this section, we discuss the scaling limit of the multi-time distribution
function (2.1) by applying the saddle point method to the kernel (3.5)–(3.7) in
Theorem 1.

We consider two types of scaling limit. The first case is explained in Sec. 3.2.
We focus on the situation where both time t and the label of the tagged particle M
tend to infinity when there are n defect particles with the stay rates {q̄ j } j=1,...,n in
front of the tagged particle. The results on the limiting distributions are summa-
rized as Theorem 2. Their proofs are given in Secs. 5.1, 5.2 and 5.3.

In the second case, we take t to be infinite with M fixed. The limiting
distribution is described in Theorem 3 in Sec. 3.3, whose proof is given in Sec. 5.4.

5.1. Region 1 (Proof of Theorem 2-1)

In this section, we consider the scaling limit in the region 1 in Fig. 3. We
scale time ti as (3.14). In order to calculate the limiting distribution, we rewrite
the kernel (3.5)–(3.7) with the condition (3.9) as

K (t1, x1; t2, x2) = K̃ (t1, x1; t2, x2) − φt1,t2 (x1, x2)

= 1

(2π i)2

∫

CR′
1

dz1

z1

∫

CR′
2

dz2

z2

z1

z1 − z2

(1 + 1/z2)t2−M+1

(1 + 1/z1)t1−M+1

(
1 − pz2

1 − pz1

)M−n

×
n∏

i=1

1 − p̄i z2

1 − p̄i z1

zx2
2

zx1
1

, (5.1)

where p = q/(1 − q) and p̄i = q̄i/(1 − q̄i ). CR denotes the contour with radius
R enclosing the origin anticlockwise and R′

i (i = 1, 2) satisfy the condition, 1 <

R′
2 < R′

1 < 1/ p̄i for t1 ≥ t2 and 1 < R′
1 < R′

2 < 1/ p̄i for t1 < t2. Using (5.1) and
the relation

z1

z1 − z2
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

m=0

(
z2

z1

)m

, t1 ≥ t2,

−
∞∑

m=0

(
z1

z2

)m+1

, t1 < t2,

(5.2)

one finds

K (t1, x1; t2, x2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

m=0

�1(x1 + m, t1)�2(x2 + m, t2), t1 ≥ t2,

−
∞∑

m=0

�1(x1−m − 1, t1)�2(x2−m − 1, t2), t1 < t2.

(5.3)
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Here the function �1(m, t1, x1) and �2(m, t2, x2) are given by

�1(x1, t1) = 1

2π i

∫

CR1

dz

z

1

(1 + 1/z)t1−M+1(1 − pz)M

n∏

i=1

1 − pz

1 − p̄i z

1

zx1
, (5.4)

�2(x2, t2) = 1

2π i

∫

C1

dw

w
(1 + 1/w)t2−M+1(1 − pw)M

n∏

i=1

1 − p̄iw

1 − pw
wx2 ,

(5.5)

where the radius R1 of the contour CR1 in (5.4) is taken such that 1 < R1 < 1/ p̄i .
In the following discussion, we evaluate the asymptotics of the kernel (5.1) by
applying the saddle point method to the functions �i (x, t) (i = 1, 2).

First we consider the asymptotics of �1(x1, t1). Substituting (3.14) with (5.4),
we set

�1(x1, t1) = 1

2π i

∫

CR1

dz

z
e−M f (z) 1

(1 + z)1+M
1
2 D1τ1

n∏

i=1

1 − pz

1 − p̄i z

1

zx1−t1+M−1
,

(5.6)

where

f (z) = p log(1 + z) + log(1 − pz). (5.7)

From the equation f ′(zc) = 0, we find the critical point zc is given by

zc = 0. (5.8)

Scaling the variable z around the critical point as

z = zc + z′

D1 M
1
2

= z′

D1 M
1
2

, (5.9)

where D1 = √
q/(1 − q) = √

p(1 + p), we evaluate the asymptotics of the term
e−M f (z) in (5.6) by the saddle point method,

e−M f (z) ∼ e
−M( f (0)+ f ′′ (0)

2D2
1 M

z′2) = e
z′2
2 , (5.10)

as M → ∞. Next we consider the asymptotics of other terms in (5.6). From (5.9),
one obtains

1

(1 + z)M
1
2 D1τ1+1

∼ e−τ1z′
,

n∏

i=1

1 − pz

1 − p̄i z
∼ 1. (5.11)

Transforming xi into x ′
i (i = 1, 2),

xi = ti − M + 1 − x ′
i , (5.12)
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and considering (5.9), one gets

1

zx1−t1+M−1
∼ zx ′

1

D
x ′

1
1 M

x ′
1
2

. (5.13)

Note that by the transformation (5.12), the function g(ti , x) (3.4) in the Fredholm
determinant (3.3) is changed to g(τi , x ′) = −χ(−∞,�i )(x

′). From (5.9)–(5.13), we
obtain the asymptotic form of �1(x1, t1),

�1(x1, t1) ∼ D
−x ′

1
1 M

−x ′
1

2

2π i

∫ i∞+ε

−i∞+ε

dz′e
z′2
2 −τ1z′

z′x ′
1−1, (5.14)

where ε > 0.
Next we consider the asymptotics of �2(x2, t2) (5.5). Similar to �1(x1, t1),

we set

�2(x2, t2) = 1

2π i

∫

C1

dw

w
eM f (w)(1 + z)1+M

1
2 D1τ2

n∏

i=1

1 − p̄iw

1 − pw
wx2−t+M−1.

(5.15)

Here f (w) is defined in (5.7) and C1 denotes the contour enclosing the origin
anticlockwise with radius 1. Applying the saddle point method to this equation in
the same way as �1(x1, t1), we get

�2(x2, t2) ∼ D
x ′

2
1 M

x ′
2
2

2π i

∫

C1

dw′

w′x ′
2+1

e− w′2
2 +τ2w

′
. (5.16)

Thus from (5.3), (5.14), and (5.16), we find

lim
M→∞

K (t1, x1; t2, x2)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(D1

√
M)x ′

2−x ′
1

∞∑

m=0

ψ1(x ′
1−m, τ1)ψ2(x ′

2 − m, τ2), τ1 ≥ τ2,

−(D1

√
M)x ′

2−x ′
1

∞∑

m=0

ψ1(x ′
1 + m + 1, τ1)ψ2(x ′

2+m+1, τ2), τ1 < τ2,

(5.17)

where

ψ1(x ′
1, τ1) = 1

2π i

∫ i∞+ε

−i∞+ε

dze
z2

2 −τ1z zx ′
1−1, (5.18)

ψ2(x ′
2, τ2) = 1

2π i

∫

C1

dw

wx ′
2+1

e− w2

2 +τ2w. (5.19)
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Introducing the function Dn(z) by

Dx−1(τ ) =
√

2πe
τ2

4 ψ1(x, τ ), (5.20)

one finds that the function satisfies Weber’s equation, (48)

d2 Dn(z)

dz2
+

(
n + 1

2
− 1

4
z2

)
Dn(z) = 0. (5.21)

The initial condition was given in Ref. 30 as

Dn(0) = 2
n+1

2√
2π

sin
(π

2
(n + 1)

)
�

(
n + 1

2

)
, (5.22)

D′
n(0) = −Dn+1(0), (5.23)

where �(x) represents the Gamma function. The function satisfying (5.21)–(5.23)
is known as the parabolic cylinder function. (48) In addition, one easily finds
ψ2(x, τ ) can be represented as (3.18) from the integral representation of the
Hermite polynomial Hn(x), (48)

Hn(x) = n!

2π i

∮
dz

zn+1
e2xz−z2

. (5.24)

Hence, noticing the prefactor (D1

√
M)x ′

2−x ′
1 does not contribute to the deter-

minant in 3.3, we get the limiting kernel (3.16)–(3.18).

5.2. Regions 2 and 3 (Proof of Theorems 2-2 and 2-3′)

In this section we consider the scaling limit of the regions 2 and 3 in Fig. 3.
We fix the scaled time u (3.8) such that 1/(1 − q) < u < uc for the region 2 and
u = uc for the region 3, where uc = (q̄2 − 2qq̄ + q)/(q̄ − q)2. We scale the time
t j , the position � j of the tagged particle at t j , and the stay rates of the defect
particles q̄i (i = 1, . . . , n) as (3.21), (3.22) and (3.36) respectively.

First we analyze the asymptotics of K̃ (t1, x1; t2, x2) in (3.6) by the saddle
point method. Using the variable µ(u) which will be fixed later, we set

K̃ (t1, x1; t2, x2) = 1

(2π i)2

∫

CR1

dz1

z1

∫

CR2

dz2

z2
exp

(
M( fu2 (z2) − fu1 (z1))

) z1

z1 − z2

× zx2−µ(u2)M
2

zx1−µ(u1)M
1

(
1 − pz1

1 − pz2

)n n∏

i=1

1 − p̄i z2

1 − p̄i z1

1 + 1/z2

1 + 1/z1
. (5.25)

Here ui = ti/M , p = q/(1 − q), and p̄i = q̄i/(1 − q̄i ). The function fu(z) is de-
fined as

fu(z) = (u − 1) log(1 + z) + log(1 − pz) + (µ(u) − u + 1) log(z). (5.26)
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We fix the value of µ(u) in such a way that two saddle points of fu(z) merge
to one point. We have

µ(u) = u − 1 − A2(u) = p(u − 2) + 2
√

p(u − 1)

1 + p
, (5.27)

and the double critical point zc(u) of fu(z) is obtained as

zc(u) =
√

u − 1 − √
p

√
p2(u − 1) + √

p
. (5.28)

Note that

f ′
u(zc(u)) = f ′′

u (zc(u)) = 0 (5.29)

is satisfied with µ(u) fixed as (5.27).
Thanks to the property that zc(u) ≤ 1/ p̄i when 1/(1 − q) < u ≤ uc which

is the condition of regions 2 and 3, it is found that we can deform the contours
CRi (i = 1, 2) around the double saddle point (5.28). Thus we scale z1 and z2 as

z1 = zc(u1)

(
1 − iw1

D(u)M
1
3

)
, z2 = zc(u2)

(
1 + iw2

D(u)M
1
3

)
, (5.30)

where D(u) is defined in (3.24). Noting (5.29) and the relation

− f ′′′(zc(u))z3
c(u)

2
= D(u)3, (5.31)

we have

exp
(
M( fu2 (z2) − fu1 (z1))

) ∼ exp
(
M fu2 (zc(u2)) + M

f
′′′
u2

(zc(u2))

6 (z2 − zc(u2))3
)

exp
(
M fu1 (zc(u1)) + M

f ′′′
u1

(zc(u1))

6 (z1 − zc(u1))3
)

∼ exp

(
M

(
fu2 (zc(u2)) − fu1 (zc(u1))

) + i
(
w3

1 + w3
2

)

3

)
. (5.32)

Hence we had the asymptotic form of the term exp
(
M( fu2 (z2) − fu1 (z1))

)

in (5.25). Next we consider that of other terms in (5.25). Combining (5.30) with
the relation

C(u)
z′

c(u)

zc(u)
= 1

D(u)M
1
3

, (5.33)

we find

z1 ∼ zc(u)

(
1 + τ1 − iw1

D(u)M
1
3

)
, z2 ∼ zc(u)

(
1 + τ2 + iw2

D(u)M
1
3

)
. (5.34)
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Furthermore, associated with (3.22), we scale xi (i = 1, 2) as

xi = (u − 1)M − A2(ui )M + D(u)M
1
3 ξi . (5.35)

Here A2(u) is defined in (3.12). Using (5.34), (5.35) and (3.36), we get

z1

z1 − z2
∼ D(u)M

1
3

τ1 − τ2 − i(w1 + w2)
, (5.36)

(
1 − pz1

1 − pz2

)n 1 + 1/z2

1 + 1/z1
∼ 1, (5.37)

n∏

i=1

1 − p̄i z2

1 − p̄i z1
∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, region 2

(
u ≤uc = q̄2 − 2qq̄+q

(q̄ − q)2

)
,

n∏

i=1

ηi − τ2 − iw2

ηi − τ1 + iw1
, region 3 (u = uc),

(5.38)

zx2−µ(u2)M
2

zx1−µ(u1)M
1

∼ zc(u)D(u)M
1
3 (ξ2−ξ1) exp(ξ2τ2 − ξ1τ1 + iw1ξ1 + iw2ξ2). (5.39)

Note that in (5.38), the asymptotic form is different between regions 2 and 3. This
leads to the difference of the limiting distribution between Theorems 2-2 and 2-3′.

Thus we obtain the asymptotic form of K̃ (t1, x1; t2, x2),

K̃ (t1, x1; t2, x2)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∼ ν

D(u)M
1
3

∫ ∞

0
dλe−λ(τ1−τ2)Ai(ξ1+λ)Ai(ξ2+λ), region 2,

∼ ν

D(u)M
1
3

∫ ∞

0
dλe−λ(τ1−τ2)Ai(ξ1 + λ)Ai(ξ2 + λ)

+ ν

D(u)M
1
3

n∑

j=1

1

2π

∫ ∞

−∞
dw1 exp

(
iξ1w1+ iw3

1

3

) j∏

k=1

1

ηk − τ1 + iw1

× 1

2π

∫ ∞

−∞
dw2 exp

(
iξ2w2+iw3

2

3

) j−1∏

k=1

(ηk −τ2+iw2), region 3.

(5.40)

Here

ν = exp
(
M( fu2 (zc(u2)) − fu1 (zc(u1))) + ξ2τ2 − ξ1τ1

)
zc(u)D(u)M

1
3 (ξ2−ξ1).

(5.41)
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In (5.40), we used the integral representation of the Airy function

Ai(x) = 1

2π

∫ ∞

−∞
dλeixλ+ i

3 λ3
, (5.42)

and the relation

1

τ1 − τ2 − i(w1 + w2)

⎛

⎝
N∏

j=1

η j − τ2 − iw2

η j − τ1 + iw1
− 1

⎞

⎠

= 1

η1 − τ1 + iw1
+ η1 − τ2 − iw2

(η1 − τ1 + iw1)(η2 − τ1 + iw1)
+ · · ·

+ (η1 − τ2 − iw2)(η2 − τ2 − iw2) · · · (ηN−1 − τ2 − iw2)

(η1 − τ1 + iw1)(η2 − τ1 + iw1) · · · (ηN − τ1 + iw1)
. (5.43)

Next we consider the asymptotics of φt1,t2 (x1, x2) (3.7). Using fu(z) (5.26)
and µ(u) (5.27), the function is rewritten as for t1 < t2,

φt1,t2 (x1, x2) = 1

2π i

∫

C1

dz

z
eM( fu2 (z)− fu1 (z))zx2−µ(u2)M−x1+µ(u1)M . (5.44)

Let the variable z scale as

z = zc(u)

(
1 + iσ

D(u)M
1
3

)
, (5.45)

where zc(u) defined in (5.28) is the double saddle point of (5.26). Due to (5.33),
we have for i = 1, 2

z ∼ zc(ui )

(
1 + iσ − τi

D(u)M
1
3

)
. (5.46)

From the above two equations, (5.31) and (5.35), we get

eM( fu2 (z)− fu1 (z)) ∼ eM( fu2 (zc(u2))− fu1 (zc(u1)))e
i
3 (σ+iτ2)3− i

3 (σ+iτ1)3

= eM( fu2 (zc(u2))− fu1 (zc(u1)))e−(τ2−τ1)σ 2−i(τ 2
2 −τ 2

1 )σ+ τ3
2 −τ3

1
3 , (5.47)

zx2−µ(u2)M−x1+µ(u1)M ∼ zc(u)D(u)M
1
3 (ξ2−ξ1)eiσ (ξ2−ξ1). (5.48)

Thus we obtain for t1 < t2,

φt1,t2 (x1, x2)

∼ ν

D(u)M
1
3

eξ1τ1−ξ2τ2+ τ3
2 −τ3

1
3

∫ ∞

−∞
dσe−(τ2−τ1)σ 2−i(τ 2

2 −τ 2
1 )σ+i(ξ2−ξ1)σ
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= ν

D(u)M
1
3

1√
4π (τ2 − τ1)

exp

(−(ξ2 − ξ1)2

4(τ2 − τ1)
− (ξ2 + ξ1)(τ2 − τ1)

2
+ (τ2 − τ1)3

12

)
,

(5.49)

where ν is given in (5.41). From (5.42) we finally find

φt1,t2 (x1, x2) ∼ ν

D(u)M
1
3

∫ ∞

−∞
dλe−λ(τ1−τ2)Ai(ξ1 + λ)Ai(ξ2 + λ). (5.50)

Hence from (5.43) and (5.50) and noting that the term ν (5.41) does not affect the
determinant, we finally obtain the desired kernels for the regions 2 and 3.

5.3. Region 4 (Proof of Theorem 2-4’)

In this section, we discuss the asymptotics of the region 4 in Fig. 3. In this
region we take time t j in such a way that they are macroscopically separated and
the scaled time u j = t j/M is taken as u j > uc. The position � j of the tagged
particle at t j and the stay rates q̄i (i = 1, . . . , n) of the defect particles are also
scaled as (3.42) and (3.48) respectively.

Deforming the contour CR1 in the kernel K̃ (t1, x1; t2, x2) (3.6), we divide it
into two parts,

K̃ (t1, x1; t2, x2) = K̃1(t1, x1; t2, x2) − K̃2(t1, x1; t2, x2). (5.51)

Here for i = 1, 2

K̃i (t1, x1; t2, x2) = − 1

(2π i)2

∫

�
(i)
p̄

dz1

z1

∫

CR2

dz2

z2

z1

z1 − z2

(1 + 1/z2)t2−M+1

(1 + 1/z1)t1−M+1

×
(

1 − pz2

1 − pz1

)M−n n∏

i=1

1 − p̄i z2

1 − p̄i z1

zx2
2

zx1
1

, (5.52)

where p = q/(1 − q) and p̄i = q̄i/(1 − q̄i ). In the equation above, the contour
�

(1)
p̄ encloses z = 1/ p̄i anticlockwise while the contour �

(2)
p̄ is chosen in such a

way that it encloses z = −1, 0, 1/ p̄i anticlockwise.
First, we discuss the asymptotic form of K̃1(t1, x1; t2, x2). This is rewritten as

K̃1(t1, x1; t2, x2) = − 1

(2π i)2

∫

�
(1)
p̄

dz1

z1

∫

CR2

dz2

z2
eM(gu2 (z2)−gu1 (z1)) z1

z1 − z2

×
(

1 − pz1

1 − pz2

)n n∏

i=1

1 − p̄i z2

1 − p̄i z1

1 + 1/z2

1 + 1/z1

zx2−M�(u2)
2

zx1−M�(u1)
1

, (5.53)

where �(u) is a variable which will be fixed later and

gu(z) = (u − 1) log(1 + z) + log(1 − pz) + (�(u) − u + 1) log z. (5.54)
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We choose the value of �(u) in such a way that the saddle point of gu(z) is 1/ p̄
where p̄ = q̄/(1 − q̄) . From the condition,

g′
u

(
1

p̄

)
= 0, (5.55)

we have

�(u) = (u − 1) − AG(u) = p̄(u − 1)

1 + p̄
+ p

p̄ − p
. (5.56)

Scaling zi (i = 1, 2) around the saddle point (5.55) as

zi = 1

p̄

(
1 − 2wi

DG(ui )M
1
2

)
, (5.57)

and noting p̄2 D2
G(u) = 2g′′

u (1/ p̄), we can obtain the asymptotic form of
eM(gu2 (z2)−gu1 (z1)) in (5.53) by the saddle point method,

eM(gu2 (z2)−gu1 (z1)) ∼ e
M

(
gu2

(
1
p̄

)
−gu1

(
1
p̄

))

ez2
2−z2

1 . (5.58)

Associated with (3.42), we set

xi = (ui − 1)M − AG(ui )M + DG(ui )M
1
2 ξi , (5.59)

for i = 1, 2. From this equation, (5.57) and (3.48), we find

n∏

i=1

1 − p̄iw

1 − p̄i z
∼

n∏

i=1

e−τ2w2 + εi

e−τ1w1 + εi
,

z1

z1 − z2
∼ M

1
2

−2(e−τ1w1 − e−τ2w2)
,

(
1 − pz1

1 − pz2

)n 1 + 1/z2

1 + 1/z1
∼ 1,

zx2−M�(u2)
2

zx1−M�(u1)
1

∼
(

1

p̄

)(eτ2 ξ2−eτ1 ξ1)M
1
2

e−2w2ξ2+2w1ξ1 ,

(5.60)

where we used the parameter τi defined in (3.44).
Thus we eventually get

K̃1(t1, x1; t2, x2)

∼ (1 + p̄)t2−t1 p̄x1−x2

eτ2 M
1
2

2

(2π i)2

∫

�

dw1

∫

γ

dw2
ew2

2−w2
1−2w2ξ2+2w1ξ1

eτ1−τ2w2 − w1

n∏

i=1

e−τ2w2 + εi

e−τ1w1 + εi
.

(5.61)

Here the contour � encloses −eτ1εi (i = 1, . . . , n) anticlockwise and γ is an
arbitrary path running from −i∞ to i∞.
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Next we consider the asymptotics of φt1,t2 (x1, x2) (3.7). By use of gu(z) (5.54)
and �(u) (5.56), we set for t1 < t2,

φt1,t2 (x1, x2) = 1

2π i

∫

C1

dz

z
eM(gu2 (z)−gu1 (z))zx2−x1−�(u2)+�(u1). (5.62)

Scaling z as

z = 1

p̄

⎛

⎝1 + i
2w√(

D2
G(u2) − D2

G(u1)
)
M

⎞

⎠ , (5.63)

From this equation and (5.59), we get

eM(gu2 (z)−gu1 (z)) ∼ eM(gu2 ( 1
p̄ )−gu1 ( 1

p̄ ))e−w2
, (5.64)

zx2−x1−M(�(u2)−�(u1)) ∼
(

1

p̄

)(eτ2 ξ2−eτ1 ξ1)M
1
2

exp

(
2iw

ξ2 − eτ1−τ2ξ1√
1 − e2(τ1−τ2)

)
,

(5.65)
Thus we obtain for t1 < t2,

φt1,t2 (x1, x2) ∼ (1 + p̄)t2−t1 p̄x1−x2

π
√

(e2τ2 − e2τ1 )M

∫ ∞

−∞
dwe

−w2+2iw
ξ2−eτ1−τ2 ξ1√

1−e2(τ1−τ2)

= (1 + p̄)t2−t1 p̄x1−x2

eτ2 M
1
2

e
− (ξ2−eτ1−τ2 ξ1)2

1−e2(τ1−τ2)

√
π (1 − e2(τ1−τ2))

. (5.66)

At last, we discuss that K̃2(t1, x1; t2, x2) in (5.52) does not contribute the
asymptotic form of the kernel (3.5). The derivation can be done in the similar
fashion to the one in Theorem 3.1. in Ref. 54. Here we give only its outline.

First we consider the case of equal time, t1 = t2 = t = uM . Scaling zi (i =
1, 2) as (5.30), we have

K̃2(t, x1; t, x2) ∼ −zc(u)DG (u)M
1
2 (ξ2−ξ1)

D(u)M
1
3

×
∫ ∞

0
dλAi

(
�A(u)

D(u)
M

2
3 + DG(u)

D(u)
M

1
6 ξ1 + λ

)

×Ai

(
�A(u)

D(u)
M

2
3 + DG(u)

D(u)
M

1
6 ξ2 + λ

)
, (5.67)

where �A(u) = A2(u) − AG(u). Noticing that �A(u) > 0 for the region 4 (uc <

u) and the asymptotic form of the Airy function

Ai(x) ∼ 1

2
√

π
x− 1

4 exp

(
−2

3
x

3
2

)
, (5.68)
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as x → ∞, we find

K̃2(t, x1; t, x2) ∼ e−O(M). (5.69)

This indicates that under the scaling (3.42), the kernel K̃2(t, x1; t, x2) vanishes as
M goes to infinity.

Next we consider the case for arbitrary ti (i = 1, 2). We scale z1 around the
double saddle point zc(u1) of fu1 (z) and z2 around the saddle point 1/ p̄ of gu2 (z1)
as

z1 = zc(u1)

(
1 − iw1

D(u1)M
1
3

)
, z2 = 1

p̄

(
1 − 2w2

DG(u2)M
1
2

)
. (5.70)

Under these scalings, we find

K̃2(t, x1; t, x2) ∼ − (1 + p̄)t2−t1 p̄x1−x2 e−ξ 2
2 DG(u1)√

π DG(u2)
× �(u1, ξ1), (5.71)

where

�(u1, ξ1)

= 1

zc(u1) − 1/ p̄

(
1 − p/ p̄

1 − pzc(u1)

)M−n n∏

i=1

1 − p̄i/ p̄

1 − p̄i zc(u1)

zc(u1)−x1 p̄−x1

D(u1)DG(u1)M
5
6 p̄

× (1 + p̄)(u1−1)M+1

(
1 + 1

zc(u1)

)(u1−1)M+1
Ai

(
�A(u1)

D(u1)
M

2
3 + DG(u1)

D(u1)
M

1
6 ξ1

)
. (5.72)

Considering the case t1 = t2 in (5.71) and the former result (5.69), one easily finds

�(u, ξ ) ∼ e−O(M). (5.73)

Hence we finally get

K̃2(t1, x1; t2, x2) ∼ (1 + p̄)t2−t1 p̄x1−x2
(
e−O(M)

)
. (5.74)

From (5.61), (5.66) and (5.74) and noting the factor (1 + p̄)t2−t1 p̄x1−x2 does
not affect the determinant, we obtain the desired expression for the limiting kernel.

5.4. Fixed M Case (Proof of Theorem 3)

In this section we discuss the scaling limit explained in Sec. 3.3 where time t
goes to infinity with M fixed. In this limit, we scale the time t j , the particle position
� j , and the stay rates qi (i = 1, . . . , M) as (3.54), (3.55), and (3.56) respectively.

First we consider the scaling form of K̃ (t1, x1; t2, x2) (3.6). Changing the
variables zi (i = 1, 2) to z′

i = 1/zi , we have

K̃ (t1, x1; t2, x2)
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= 1

(2π i)2

∫

�p

dz′
1

z′
1

∫

CR1

dz′
2

z′
2

z′
2

z′
2 − z′

1

(1 + z′
2)t2−M+1

(1 + z′
1)t1−M+1

M∏

i=1

z′
2 − pi

z′
1 − pi

z′
1

x1+M

z′
2

x2+M
,

(5.75)

where the contour �p encloses pi = qi/(1 − qi ) anticlockwise, and CR1 encloses
the origin z′ and pi = qi/(1 − qi ). Introducing y(τi ) (i = 1, 2), which will be
chosen later, we set

K̃ (t1, x1; t2, x2)

= 1

(2π i)2

∫

�p

dz′
1

z′
1

∫

CR1

dz′
2

z′
2

z′
2

z′
2 − z′

1

eT (hτ2 (z′
2)−hτ1 (z′

1))

×
M∏

i=1

z′
2 − pi

z′
1 − pi

z′
1

x1−y(τ1)T +M

z′
2

x2−y(t2)T +M

(
1 + z′

1

1 + z′
2

)M−1

, (5.76)

where the parameter τ is defined in (3.54) and

hτ (z) = e2τ ln(1 + z) − y(τ ) ln(z). (5.77)

We choose y(τ ) in a way that hτ (z) has the saddle point at z = p = q/(1 − q)
where q is defined in (3.56). Thus from the condition, h′

τ (p) = 0, we have

y(τ ) = pe2τ

1 + p
. (5.78)

We scale the variable z′
i (i = 1, 2) around the saddle point zc = p as

z′
i = p

(
1 +

√
2(1 + p)

eτi (pT )
1
2

wi

)
. (5.79)

Considering (3.55), we also scale xi (i = 1, 2) as

xi = pe2τi

1 + p
T + ξi

eτi
√

2pT

1 + p
. (5.80)

From these equations and (3.56), we find

eT (hτ2 (z′
2)−hτ1 (z′

1)) ∼eT (hτ2 (p)−hτ1 (p))ew2
2−w2

1 ,
z′

2

z′
2 − z′

1

∼ 1

e−τ2w2 − e−τ1w1

(pT )
1
2√

2(1+p)
,

z′
1

x1−y(τ1)T

z′
2

x2−y(τ2)T
∼ p

√
2pT

1+p (eτ1 ξ1−eτ2 ξ2)e2w1ξ1−2w2ξ2 ,

M∏

i=1

z′
2 − pi

z′
1 − pi

∼
M∏

j=1

e−τ2w2 + ε j

e−τ1w1 + ε j
,

z′
1

M

z′
2

M

(
1 + z′

1

1 + z′
2

)M−1

∼ 1. (5.81)
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From these equations, we eventually obtain

K̃ (t1, x1; t2, x2) ∼ (1 + p)t2−t1 px1−x2
(1 + p)

eτ2
√

2pT

2

(2π i)2

∫

�

dw1

×
∫

γ

dw2
ew2

2−2w2ξ2−w2
1+2w1ξ1

eτ1−τ2w2 − w1

M∏

j=1

e−τ2w2 + ε j

e−τ1w1 + ε j
. (5.82)

Here the contour � encloses −eτ1εi , (i = 1, . . . , M) anticlockwise and γ is arbi-
trary path from −i∞ to i∞.

Next we consider the scaling limit of φt1,t2 (x1, x2) (3.7). Changing the variable
z to z′ = 1/z, we set

φt1,t2 (x1, x2) = 1

2π i

∮
dz′

z′ eT (hτ2 (z′)−hτ1 (z′))zx1−x2−(y(τ1)−y(τ2))T , (5.83)

where hτ (z) and y(τ ) are given in (5.77) and (5.78). We set

z′ = p

(
1 +

√
2

(e2τ2 − e2τ1 )pT
(1 + p)w

)
. (5.84)

From this equation and (5.80)

eT (hτ2 (z)−hτ1 (z)) ∼ eT (hτ2 (z)−hτ1 (z))ew2
,

zx1−x2−(yτ1 −yτ2 )T ∼ p(τ2ξ2−τ1ξ1)
√

2pT
1+p exp

(
2(ξ2 − ξ1)w√

e2τ2 − e2τ1

)
. (5.85)

Combining these equations, we finally find

φt1,t2 (x1, x2)

∼ (1 + p)t2−t1 px1−x2

√
2(1 + p)√

(e2τ2 − e2τ1 )T p

1

2π i

∫ ∞

−∞
dw exp

(
w2+ 2(ξ2 − ξ1)w√

e2τ2 − e2τ1

)
,

= (1 + p)t2−t1 px1−x2
1 + p

eτ2
√

2pT

√
1

π
(
1 − e2(τ2−τ1)

) exp

(−(ξ2 − eτ1−τ2ξ1)2

1 − e2(τ1−τ2)

)
.

(5.86)

Thus from (5.82) and (5.86) and noting that the prefactor (1 + p)t2−t1 px1−x2 does
not affect the determinant, we get the desired expression for the kernel.
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Fig. 8. Probability distributions of the scaled position of the 100th particle from the right (M = 100)
for t = 200 (a), t = 1000 (b) and t = 3000 (c). In these figures, × represents the data for the case
without defect particles and we set the stay rate q = 0.1. On the other hand, + corresponds to the case
where the first particle is a defect particle with q̄ = 0.2 while remaining particles are normal ones
with q = 0.1. The number of samples are 10000 for each case. In (a), both cases belong to the region
2 and are fitted into the GUE Tracy-Widom distribution shown as the dashed line. In (b), the second
case belongs to the region 3 since u = t/M = 10 = uc where uc = (q̄2 − 2q̄q + q)/(q̄ − q)2 and it
is described by the distribution denoted as GOE2 while the first case remains in region 2. In (c), the
second cases comes under the region 4 where the distribution is described by Gaussian (dashed line).

6. DISCUSSION

6.1. Numerical Simulations

In this section, we give the result of Monte-Carlo simulations about the
position fluctuation of a tagged particle in the TASEP in order to check our
analysis discussed in the preceding sections.

We performed the simulations in two situations, the case without defect
particle and that with one defect particle. Figure 8 shows the data of the scaled
position of a tagged particle obtained by the Monte-Carlo simulation and the
probability distribution functions which must fit them. Figure 8(a) corresponds to
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the time region 1/(1 − q) < u < uc = (q̄2 − 2qq̄ + q)/(q̄ − q)2 where q (resp.
q̄) is the stay rate of the normal particle (resp. the defect particle). Note that in
the region, the both situations belong to the region 2 and due to Theorem 2-2,
the GUE Tracy-Widom distribution must fit the data. Figure 8(b) represents the
case u = uc. In this case the first situation comes under the region 2. On the other
hand, the second one belongs to the region 3 where the position fluctuation are
described by the limiting largest eigenvalue distribution of GOE2 as explained in
Theorem 2-3. In Fig. 8(c), only the data for the second situation are shown for
the case uc < u. This case is classified as the region 4 and from Theorem 2-4, the
fluctuation is supposed to be Gaussian. In all figures, we see a good agreement
between the data and the distribution functions which they must obey.

6.2. Correlation of Current Fluctuations

In this article, we have discussed the multi-time distribution of the tagged
particle (2.1). In order to analyze it, we have introduced the directed polymer
problem of the 01 matrix in Sec. 4.

Here we consider the directed polymer problem of another random matrix
where each element is geometric random variable. By this analysis we can discuss
the correlations of other quantities in the TASEP with the step initial condition.

Let {ag(i, j)}1≤i≤N ,1≤ j≤M be the N × M matrix and the element ag(i, j) is
the geometric random variable,

Prob(ag(i, j) = k) = (1 − q j )q
k
j , (6.1)

where q j is the parameter of the geometric distribution and we identified this
with the stay rate of the j th particle of the TASEP with the step initial condition
defined in Sec. 2. For the matrix, we introduce the quantity G∗

g(N , M) analogous
to G(N , M) (4.3) as

G∗
g(N , M) = N + M − 1 + max

πg(N ,M)

∑

(i, j)∈πg(N ,M)

ag(i, j). (6.2)

Here πg(N , M) is the set of right/down paths from (1, 1) to (N , M),

πg(N , M) = {{(ik, jk)k=1,2,...,N+M−1}|(i1, j1) = (1, 1), (iN+M−1, jN+M−1)

= (N , M), (ik+1 − ik, jk+1 − jk) = (1, 0) or (0, 1)} . (6.3)

In this setting, we consider the following quantity,

Prob(G∗
g(N1, M) ≤ t1, . . . , G∗

g(Nm, M) ≤ tm). (6.4)

It is known that G∗
g(N , M) can be interpreted as a quantity in the TASEP as

follows, (17,43)
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G∗
g(N , M) = t : In the TASEP with the step initial condition, the time until

which the M th particle moves N sites to its right is t .
Thus the quantity (6.4) represents the correlations of the arrival times of the

M th particle at the site Ni (i = 1, . . . , m). (Note that we set the site coordinate as
in Fig. 1(b).) Furthermore we easily find that

Prob(G∗
g(N , M) ≤ t) =

{
Prob(H (t, N ) ≥ N ), for N ≤ M,

Prob(H (t, N ) = M), for M ≤ N .
(6.5)

Here H (t, N ) represents the number of particles which passed the site N until
time t . Thus the probability (6.4) also means the correlations of currents between
different times and different sites.

Applying the similar technique in Sec. 4 to (6.4), we can also represent it
as the growth process of Young diagram characterized by the Schur process. The
result is as follows,

Prob(G∗
g(N1, M) ≤ t1, . . . , G∗

g(Nm, M) ≤ tm)

= Prob (λ1(N1, M) ≤ t1−M−N + 1, . . . , λ1(Nm, M) ≤ tm −N −M + 1) ,

(6.6)

where λ(Ni , M) is the Young diagram obtained by applying the normal RSK
algorithm to the submatrix {ag(i, j)}i=1,...,Ni , j=1,...,M and λ1(Ni , M) is the length
of its first row. The probability measure in the right hand side of this equation is
characterized by the following joint distribution function,

Prob
(
λ(1, M) = λ(1), . . . , λ(N , M) = λ(N )

)

= sλ(N ) (q1, q2, . . . , qM )sλ(1) (1, 0, . . .)sλ(2)/λ(1) (1, 0, . . .) . . . sλ(N )/λ(N−1) (1, 0, . . .)

×
M∏

i=1

(1 − qi )
N , (6.7)

where sλ/µ(q1, q2, . . .) is the Schur function. This is also a special case of the
Schur process and we can get the Fredholm determinant representation of (6.6).
Although in one point case, the asymptotics of this equation was discussed in Refs.
17, 43, the multi-point distribution has not been discussed yet.

7. CONCLUSION

In this article, we have studied the multi-time distribution function (2.1)
of position fluctuations of a tagged particle in the TASEP with the step initial
condition. The main results are summarized as Theorems 1, 2 and 3 in Sec. 3.

First, we have obtained the Fredholm determinant expression of (2.1) in
Theorem 1. For this purpose, we have mapped the time evolution of a tagged
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particle in the TASEP to the growth process of Young diagram which is related
to the special case of the Schur process. Next, using the Fredholm determinant in
Theorem 1, we have studied the two types of scaling limit. The first one is the case
where both time t and the label of a tagged particle M go to infinity. In the second
one, we take the t → ∞ limit with M fixed. The results for the first and second
ones are shown in Theorems 2 and 3 respectively in Sec. 3.

In the first scaling limit, if the hopping rates of all particles are the same, we
can divide the scaled time into two characteristic regions according to the limiting
behavior of (2.1), the region 1 where a tagged particle begins to move and the region
2 which is after the region 1. In the region 1, the limiting process of a tagged particle
converges to the spatially discrete process which is described in Theorem 2-1. The
process reflects on the discreteness of the model. In the region 2, on the other
hand, we have shown in Theorem 2-2 that the limiting process becomes the Airy
process, which is characteristic of the one-dimensional KPZ universality class.

If there are n defect particles with small hoping rates in front of a tagged
particle, the limiting distribution changes at the scaled time uc which is determined
by the hopping rate of the slowest defect particle. The limiting process around uc

(region 3) is equivalent to that of the largest eigenvalue in GUE Dyson’s Brownian
motion with rank one external source as described in Theorem 2-3. Theorem 2-3′

indicates that the rank becomes n if the hopping rates of the defect particles are
the same. When the scaled time is after uc (region 4), we have found in Theorem
2-4 that the process is equivalent to the one dimensional Brownian motion. If the
hopping rates are degenerate, it is equivalent to the process of the largest eigenvalue
of n × n GUE Dyson’s Brownian motion model as described in Theorem 2-4′. This
indicates that in the region 4, the effect of the defect particles is dominant whereas
that of an infinite number of normal particles is irrelevant.

Theorem 3 shows the result for the second scaling limit. The limiting distri-
bution is also described as the Fredholm determinant whose kernel is the same as
that in Theorem 2-4′.
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